
Observability in
distributed edge:
The full story

Imagine you manage thousands of edge sites that run
business-critical applications. These could be in-store
applications, property management solutions, software
within medical equipment, or industrial IoT apps.

Regardless, all edge applications run physically near the location where
they fulfill their purpose. Because of this, it is vital to have continuous
proactive insight into their performance and to be able to restore any
degradations as fast as possible. This level of monitoring is not new in
the IT industry. We have always needed monitoring systems within IT, but
historically some have been more successful than others. We can’t simply
throw our existing IT monitoring solutions at the edge and hope they work.

Observability in distributed edge: a complete guide avassa.io

https://avassa.io/

Edgy observability?� 1

Where are we on monitoring and observability today?� 2
The naive approach� 2
The scientific approach� 3
The four observability pillars� 5

Bottom-up pillars� 5
Top-down pillars� 6
Bridging pillars� 6
Action pillars� 7

What is different with edge observability?� 9

Six solution principles for edge observability� 11
Principle 1: Application centricity� 11
Principle 2: Edge site awareness� 11
Principle 3: Deploy and operations perspectives� 13
Principle 4: Infrastructure and application views� 14
Principle 5: All four pillars combined� 15
Principle 6: Managing scale� 17

Conclusion� 19

Table of Contents

Observability in distributed edge: a complete guide avassa.io

https://avassa.io/

01Edgy observability?

Before moving on, let us have a look at what we mean by “observability” and how it
compares with “monitoring”.

What is the ultimate goal for observability?

Is that not just a more fancy term for monitoring then?

Monitoring tells you that something is wrong, not why. The classical monitoring system
works with what you already know is problematic, your “known knowns.” Observability
adds insights into what happened, the ability to understand the underlying reasons.
Furthermore, classical monitoring systems often leave out the application’s user
experience, such as synthetic monitoring of response times.

Observability should help you focus on what matters, not digging
around amongst metrics.

It is an inherent capability to inspect and understand systems. It moves beyond looking
at the individual component and looks at the outcome of the system as a whole.
With an observability mindset, you pay attention to the overall system and the user’s
experience, not each component of it.

In this white paper, we will look at four things

1.

3.

2.

4.

Give some reflections on the current
state of observability and monitoring
in general

Define four pillars for a sound
observability solution

Summarize the characteristics and
challenges for edge observability

Define what is needed for
successfully assuring application
health at the edge

Observability is the ability to answer any question about
your application, at any time, no matter how complex your
infrastructure is.

Observability in distributed edge: a complete guide avassa.io | 1

https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#d73aa2208a3e4e1cb0d8ebb2c79afd31
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#d73aa2208a3e4e1cb0d8ebb2c79afd31
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#1c9907f62ee9437bb3eb5f6547761b66
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#d14f5608b9c6445f863fcae93d27b6a0
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#fbe0c5dfebdf4db390bf1108e7351fa2
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#fbe0c5dfebdf4db390bf1108e7351fa2
https://www.splunk.com/en_us/blog/devops/observability-it-s-not-what-you-think.html
https://avassa.io/

02Where are we on
monitoring and
observability today?

The naive approach

Regardless of whether you have labelled your solution as
“monitoring” or “observability,” what truly matters is the value you
get out of it.

And simply renaming a solution as one that delivers observability does not mean it will,
or that it will generate any value. Unfortunately, that sort of shortcut is all too common
these days.

To get actual value you need quality monitoring data, instead of
focusing on how it is transported on the wire or stored.

There have been too many discussions describing monitoring solutions as a bucket
in which you collect as many events as possible, and too much focus on telemetry
protocols and the data analytics platform. Many choose to stay blind to reality, hoping
that the analytic layer will give them free lunches. Often, when this approach is taken,
the corresponding dashboard is colorful with graphs plotting numerous KPIs with little
guidance to operations. But this doesn’t tell you what is or isn’t impacting the business,
nor does it give you a triaged list of what is most critical at any given moment. You can
have many colorful counters and alarms, but they’re useless if they don’t identify an
order of importance to your issues, provide proactive insights and guidance, and tell
you how to troubleshoot the issues.

Muddying the waters with a discussion about new terms such as
observability versus monitoring runs the risk of validating this
naive approach.

For example, observability is defined by some as simply collecting metrics, event
logs, and traces (whatever we have) and adding analytics on top of that. This overly
simplistic view will not give you an observability system that improves your solution.

Observability in distributed edge: a complete guide avassa.io | 2

https://avassa.io/

Signs of the naive approach:

1.

3.

2.

4.

Users report most of the issues, not
the monitoring solution.

Too much focus on managing
the data platform.

Monitoring dashboard does not give
proactive guidance on where there
are issues.

Hard to analyze underlying
reasons for issues.

The scientific approach

Naive approach

Scientists do not just randomly look at their measurement instruments and see answers
pop out at them. They define research goals and measure what is needed to answer
their specific questions. The same approach should be valid for observability.

We need a way to ask questions about the health of our systems,
and observability should provide answers and detailed support to
help troubleshoot the underlying issue.

It is also important to base the observability system on some facts:

•	 Many issues are not faults/blackouts rather performance
issues/brownouts.

•	 Many issues are related to non-optimal or erroneous
configuration issues, not failures.

Central I/AaaS Central Observability Solution

Applications
Raw

telemetry

Dashboard with
KPI Points

Analytics

Data layer

Infrastructure

Observability in distributed edge: a complete guide avassa.io | 3

https://avassa.io/

Therefore a sound observability system must:

•	 Tell if the system works and why it is not working.

•	 Focus on application health and not just failure and blackout
scenarios.

•	 Be defined by the valuable insights it gives rather than a
collection of logs and metrics.

Google has put together an excellent summary of relevant observability principles in a
section on monitoring distributed systems. It summarizes principles to reach the goals
outlined above.

A proper observability solution should support all phases of a
resolution process, which is illustrated below:

Time to identify/innocence
This is the most costly phase in many situations. Users have to convince the
operations team that there is an issue. In many cases monitoring solutions do
not detect that there is an issue.

Time to analyze
Once we identify that there is an issue, we need to be able to understand what
the problem is.

Time to fix
The problem needs to be fixed. This can mean changing the configuration or
restarting a container.

Time to validate
Sometimes overlooked, after a fix, we need to validate that the health is
restored until pinging the customers or users.

Time to restore

Time to
identify/innocence

Blame-game
Identify that there is an issue

What is the underlying
problem?

Fix the
problem

Validate that it works

Time to
analyze

Time
to fix

Time to
validate

TTI TTA TTF TTV

Observability in distributed edge: a complete guide avassa.io | 4

https://sre.google/sre-book/monitoring-distributed-systems/#xref_monitoring_golden-signals](https://sre.google/sre-book/monitoring-distributed-systems/#xref_monitoring_golden-signals
https://avassa.io/

The four observability pillars

1.

3.

2.

4.

Bottom-up pillars

The most often talked about
include metrics, event logs, and
traces. In the naive approach, all
focus lies here.

Top-down pillars

These, including synthetic
measurements and probes, are
sometimes overlooked.

Bridging pillars

These connect various
measurements into something
meaningful.

Action pillars

These include tools to perform
troubleshooting and restore
health.

Before moving onto the specifics of edge observability let’s dig into pillars needed for a
good observability solution:

The bottom-up pillars are primarily concerned with white-box data
produced by the individual components: metrics, event logs,
and traces.

These data sources are most valuable in the time to analyze phase when you want to
understand what went wrong. They are less useful in the time to identify phase, when
you’re trying to proactively detect if something is wrong. It is often too challenging
to pinpoint which fraction of the events and metrics point to a system’s health
degradation. Also, many degradations issues are due to misconfigurations which often
do not result in events. In addition, it is important to consider the challenges of data
quality and historical efforts of filtering and correlation. To some degree, modern
technologies like anomaly detection can help the situation.

Bottom-up pillars

Developers with an observability mindset can assist with
improving data quality in the bottom-up pillar.

No code is done until you’ve built instrumentation to support it. Without building in this
kind of visibility, operations teams cannot determine why a system has failed. You need
to consider the users of the data, what is needed to troubleshoot, and which events are
needed for the complete resolution process.

How can we build an observability system that supports the
complete resolution process as outlined in the previous page?

Observability in distributed edge: a complete guide avassa.io | 5

https://avassa.io/

Top-down pillars

Bridging pillars

Bottom-up pillars are crucial to understanding how to troubleshoot individual
components. However, they are less valuable when trying to understand the system’s
overall health.

Therefore we should balance our solutions by adding more top-
down measurements. And the most important measurements are
results from synthetic probes and health states.

With the above bottom-up and top-down pillars, we have data sources for building
a good observability solution. But a fundamental piece is missing; we need bridging
pillars to make the information even more useful.

Synthetic probes act as clients or end-users.

They generate requests to the application and validate the response compared to what
is expected. This can be HTTPS or TCP requests, for example. The tactical thing here
is that this proactively detects issues impacting clients. It also detects complex issues
that correspond to a misconfiguration, which normally is hard to detect from events
and logs. It is tough to improve the time to identify without using synthetic probes.
Synthetic probes can act towards components or the system as a whole. In the latter
case, the probe directs traffic towards the endpoint that clients consume.

Another important top-down strategy is to implement a consistent
health state across components.

Each component should have a few overall health states. This might be locally inferred
from the bottom-up pillars. But the important thing is that developers should provide
the observable aggregated health state as part of the component/application. This
should not be left to the operations team to infer from a large amount of metrics, event
logs, and traces. Leaving that to the external observer can require them to invent the
wheel again. The developer of the component has the context and domain knowledge
for providing that information.

Observability in distributed edge: a complete guide avassa.io | 6

https://avassa.io/

Action pillars

To be able to troubleshoot and fix the problem quickly, the
observability solution can not only be a read-only system.

We need to optimize the entire time to restore process, which involves troubleshooting
tools and fixing the problem. Therefore, the observability solution needs to embed
proper tools to dig into components, restart components, run self-tests, and reconfigure
applications easily. Without this, there is a risk that there will be information loss
between operations roles and systems, resulting in a longer time to restore.

These include:

Meta-data and context
Observability data must be enriched with contextual information such as
locations and meaningful names. This is a pre-condition both for human
consumption and automation.

Dependency maps, topology
Individual components are most often part of a dependency tree; containers
belong together in an application, hosts are connected via an application
network.

State aggregation
Using the items above, states can be aggregated to show an overall health
state for a site, an application, or a type of service.

Observability in distributed edge: a complete guide avassa.io | 7

https://avassa.io/

With this toolbox at hand, we can address the complete time to
restore process as outlined below.

Bottom-up pillars

Top-down pillars Top-down pillars

Action pillars

Bridging pillars

Time to restore

Time to
identify/innocence

Time to
analyze

Time
to fix

Time to
validate

TTI TTA TTF TTV

Observability in distributed edge: a complete guide avassa.io | 8

https://avassa.io/

03What is different with
edge observability?

Before digging into how we can specialize the observability solution for the distributed
edge, let us summarize how that differs from a centralized IT solution.

Centralized IT Distributed Edge

Placement The applications are centralized
in a few data-centers

The applications are running on
a large set of distributed sites

Connectivity Central data-centers can
be assumed to always have
network connection

Edge sites can be disconnected
from the network

Centralized or
distributed data
management

Bottom-up pillars can
constantly be fed into a
centralized data analytics
solution

Edge sites might be
disconnected and the amount
of data from each site might
be too much to send to a
centralized solution

Infrastructure
homogeneity

Control over homogenous
infrastructure makes it easier
to control application and
infrastructure dependencies

Loosely coupled to
heterogenous infrastructure
makes the blame game more
complex between application
and infrastructure teams

Centralized or
distributed tools

All tools/pillars can be
centralized

Pillars/tools need to work
towards, and at, the edges

Observability in distributed edge: a complete guide avassa.io | 9

https://avassa.io/

Context Physical data centers do not
have contextual meaning in the
observability process

Edge sites and physical location
have contextual meaning

Deployment
handover to
operations

Application deployment
time span is short. Since few
application instances are
installed in central data centers
with high-quality networks the
deployment phase for each
deployment is short

Application deployment time
span can be long due to the
number of sites, slow networks,
network outages, etc.

Summarizing the table above, we see that an edge observability
solution can not just send bottom-up data to a centralized data
analytics platform.

There needs to be site-local health and metrics that are filtered and aggregated
before sending it to the central solution. It also needs to provide perspectives on the
infrastructure and the applications due to the heterogeneous environment.

The edge observability solution also needs to manage the
combination of centralized observability with distributed sites and
applications.

The tools and views need to be centralized in order to support an efficient operations
process, you need centralized insights. On the other hand, when troubleshooting and
fixing, you need simple ways of directly reaching the edges.

Observability in distributed edge: a complete guide avassa.io | 10

https://avassa.io/

04Six solution principles for
edge observability

Below follows six design principles for edge observability. They are illustrated with
some example screenshots from the Avassa system and an imaginary popcorn manager
application at each edge theatre.

It is essential to focus on what matters.

Edge exists to run localized applications. It is the health of the
application that matters.

It is easy to fall into a trap where the observability focus lies on the edge orchestration
platform itself or with the infrastructure. This will lead to a situation where users detect
application issues before the observability system.

The solution needs to be able to see the status of the application
across all edge sites.

The top-down pillar is central to address this principle.

Applications run on sites. Sites are fundamental for the edge
use case.

If you own the application, you are most interested in knowing the application’s health
at each edge site.

Principle 1: Application centricity

Principle 2: Edge site awareness

Observability in distributed edge: a complete guide avassa.io | 11

https://avassa.io/

1.

3.

2.

4.

We can reach logs for the
applications and containers at a
specific edge site.

We have overall health state
and synthetic probes for the
applications on the edge site.

We have bridging pillars,
including the application
and container structure,
dependencies between them,
and site information.

Actions are available to interact
with the containers directly on
each site.

This illustrates the use of all four pillars at the edge site

The screenshot below illustrates application centricity and edge site awareness. You can
select an application and understand its health on each site. Note that you can also see
the overall health state, “Oper. state”, the status of synthetic probes, have direct access
to the containers, and see all associated logs.

Observability in distributed edge: a complete guide avassa.io | 12

https://avassa.io/

When deploying or updating an application to thousands of sites,
the solution needs to provide good insights into the deployment
process itself.

This is because the deployment process for edge is more complex than it is for central
clouds. The time span is much longer; waiting states or failures states might span days.
An edge deployment might need to wait for network connectivity to an edge site,
for example.

It is possible to have 80% of the sites with running applications
that are moving into the operations phase, while 20% of the
applications are not yet healthy after deployment.

This must be visible so that daily operations is aware that the 20% aren’t ready
and should be sent them back to the delivery team. Applications that are not yet
successfully deployed should not be the target for ongoing monitoring. They are still in
the deploy phase. It is also essential to support drill-down functions so the outstanding
steps in the deployment are visible.

Principle 3: Deploy and operations perspectives

The screenshot below illustrates insights into a canary deployment across edge sites.
Both deployment and operations teams need to understand that specific sites are up
and running where others are waiting for the canary sites.

This addresses a well-known handover problem between delivery teams and operations
teams. Did the application and services even work at delivery or is the operations team
chasing delivery problems? This issue is more challenging in the edge use case and
must be well addressed.

Observability in distributed edge: a complete guide avassa.io | 13

https://avassa.io/

Principle 4: Infrastructure and application views

For edge, the application and infrastructure layer are more
disconnected than in the central cloud case.

This creates even bigger communication challenges between the infrastructure and the
application teams than in traditional central observability. As a result of this, the time to
identify is extended in a negative way: where is the issue?

The observability solution must therefore give full insight into the
underlying edge platforms as well as the application layer and the
dependencies between them.

In many cases, the infrastructure is owned by one organization and the applications by
another. This kind of multi-tenancy must be well supported and at the same time make
sure information can not be shared between tenants for security reasons. In addition,
there must be enough information provided to speed up any issues. For example,
application teams need insights into the to compute resources, and the infrastructure
owner typically needs insights into which applications are running on which edge sites.

The screenshot below illustrates observability insights into the edge sites and
compute hosts.

It also clarifies the mapping between the applications and where they are running. This
means that the infrastructure team will know which application containers are running
on which hosts. And similarly, the application team will see which containers are
running on which hosts. This is critical in speeding up the resolution process

Observability in distributed edge: a complete guide avassa.io | 14

https://avassa.io/

Principle 5: All four pillars combined

As briefly summarized above we need all four pillars applied locally to each edge site.
This is elaborated here:

1.

2.

Bottom-up pillars

Not all logs and metrics can be streamed to a central application. The edge site
should filter, analyze, and store the data locally. Local troubleshooting must be
supported if the connectivity to the central site is down. Also, in large-scale
scenarios, it will be too much to send everything. A subset and aggregated data
set should be forwarded to the central solution.

Furthermore, the central solution should support distributed search mechanisms
to dig down into the sites when needed.

Top-down pillars

Synthetic probes should be run at each application site to determine the
externally visible health. Use of mechanisms like startup, readiness, and liveness
probes are strongly recommended. Furthermore, the overall health state should
be aggregated per edge site and per application per edge site.

The screen shot below illustrates a distributed log search across sites:

Observability in distributed edge: a complete guide avassa.io | 15

https://avassa.io/

3.

4.

Bridging pillars

Metadata like application information, application and container structure, and
site data such as location is fundamental for the observability processes. Human
operators need this to understand where the issues happen, and automation
tools need this to take action.

Action pillars

In the distributed edge case, operations teams need centralized tools to quickly
dig down into a specific container in a particular site. This should not assume
manual steps and look up information manually. As an example, if a problem
seems related to a specific container an operator should have direct access
to tools to manage and inspect the container. It should not be necessary to
manually find out addresses, hosts names and login information, and run
container commands manually.

The example screenshot below illustrates how an operations user has drilled
down to an application on a certain site and can perform container operations
such as restart and exec:

Observability in distributed edge: a complete guide avassa.io | 16

https://avassa.io/

Principle 6: Managing scale

Each scenario can include thousands of sites with numerous
applications on each site.

Views and tools must be designed for this. Operators need views that can present this
in an overview but include quick drill-down to details.

Managing metrics, logs, and more in the edge use case will also put scaling challenges
on the solution, it is probably not feasible to forward all low level data from each edge
to the central application. As stated previously, proper division with what is stored
locally at each site and forwarded to the central solution must be balanced.

The screenshots below illustrate the use of heat maps as one technique to give an
overview of a large number of sites and applications:

Observability in distributed edge: a complete guide avassa.io | 17

https://avassa.io/

The illustration below illustrates the principles for the edge
use case:

All four principles are applied locally at each edge. The interface between the edges
are not just telemetry data, rather an interface supporting all pillars. This will result in a
centralized edge observability that answers the fundamental questions for the complete
resolution process.

Central Edge
Observability Solution

Local edge
observability

Local edge
observability

Applications

Applications

Four pillars

Many sites

Four pillars

Telemetry
Health State
Probe Status

Edge Topology

Answer these questions

Proactive Edge Observability
•	 How can we proactively

detect edge issues?
•	 How can we analyze issues?
•	 How can we quickly

fix issues?
•	 How can we validate that

the service is restored?
Actions

Infrastructure

Infrastructure

Edge observability solution principle

Observability in distributed edge: a complete guide avassa.io | 18

https://avassa.io/

05Conclusion

Do not forget to build the edge observability solution
around which questions need to get answered rather than
focusing too much on the data platform technology.

Make sure to apply the four observability pillars in order to
support the complete resolution process.

And let application focus and edge awareness guide
the design.

Observability in distributed edge: a complete guide avassa.io | 19

https://avassa.io/

	Edgy observability?
	Where are we on monitoring and observability today?
	The scientific approach
	The four observability pillars
	Bottom-up pillars
	Top-down pillars
	Bridging pillars
	Action pillars

	What is different with edge observability?
	Six solution principles for edge observability
	Principle 3: Deploy and operations perspectives
	Principle 4: Infrastructure and application views
	Principle 5: All four pillars combined
	Principle 6: Managing scale

	Conclusion

