IdVOSSo

Observability In
distributed edge:

Imagine you manage thousands of edge sites that run
business-critical applications. These could be in-store
applications, property management solutions, software
within medical equipment, or industrial 10T apps.

Regardless, all edge applications run physically near the location where
they fulfill their purpose. Because of this, it is vital to have continuous
proactive insight into their performance and to be able to restore any
degradations as fast as possible. This level of monitoring is not new in

the IT industry. We have always needed monitoring systems within IT, but
historically some have been more successful than others. We can’t simply
throw our existing IT monitoring solutions at the edge and hope they work.

Observability in distributed edge: a complete guide avassa.io

https://avassa.io/

Table of Contents

Edgy observability?

Where are we on monitoring and observability today?

The naive approach

The scientific approach

The four observability pillars
Bottom-up pillars
Top-down pillars
Bridging pillars
Action pillars

What is different with edge observability?

Six solution principles for edge observability

Principle 1: Application centricity

Principle 2: Edge site awareness

Principle 3: Deploy and operations perspectives
Principle 4: Infrastructure and application views
Principle 5: All four pillars combined

Principle 6: Managing scale

Conclusion

Observability in distributed edge: a complete guide

NOoOOoO oo wNn N

1

1
1
13
14
15
17

19

avassa.io

https://avassa.io/

Edgy observability?

Before moving on, let us have a look at what we mean by “observability” and how it
compares with “monitoring”.

What is the ultimate goal for observability?

Observability is the ability to answer any question about
your application, at any time, no matter how complex your
infrastructure is.

Is that not just a more fancy term for monitoring then?

Monitoring tells you that something is wrong, not why. The classical monitoring system
works with what you already know is problematic, your “known knowns.” Observability
adds insights into what happened, the ability to understand the underlying reasons.
Furthermore, classical monitoring systems often leave out the application’s user
experience, such as synthetic monitoring of response times.

Observability should help you focus on what matters, not digging
around amongst metrics.

[t is an inherent capability to inspect and understand systems. It moves beyond looking
at the individual component and looks at the outcome of the system as a whole.

With an observability mindset, you pay attention to the overall system and the user’s
experience, not each component of it.

In this white paper, we will look at four things

Give some reflections on the current Define four pillars for a sound
state of observability and monitoring observability solution

in general

Summarize the characteristics and Define what is needed for
challenges for edge observability successfully assuring application

health at the edge

Observability in distributed edge: a complete guide avassa.io | 1

https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#d73aa2208a3e4e1cb0d8ebb2c79afd31
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#d73aa2208a3e4e1cb0d8ebb2c79afd31
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#1c9907f62ee9437bb3eb5f6547761b66
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#d14f5608b9c6445f863fcae93d27b6a0
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#fbe0c5dfebdf4db390bf1108e7351fa2
https://radial-chef-85c.notion.site/Observability-in-distributed-edge-a-complete-guide-2891c7892253437da0f17d70ca5e44c5#fbe0c5dfebdf4db390bf1108e7351fa2
https://www.splunk.com/en_us/blog/devops/observability-it-s-not-what-you-think.html
https://avassa.io/

Where are we on
monitoring and
observability today?

The naive approach

Regardless of whether you have labelled your solution as
“monitoring” or “observability,” what truly matters is the value you
get out of it.

And simply renaming a solution as one that delivers observability does not mean it will,
or that it will generate any value. Unfortunately, that sort of shortcut is all too common
these days.

To get actual value you need quality monitoring data, instead of
focusing on how it is transported on the wire or stored.

There have been too many discussions describing monitoring solutions as a bucket

in which you collect as many events as possible, and too much focus on telemetry
protocols and the data analytics platform. Many choose to stay blind to reality, hoping
that the analytic layer will give them free lunches. Often, when this approach is taken,
the corresponding dashboard is colorful with graphs plotting numerous KPIs with little
guidance to operations. But this doesn’t tell you what is or isn’t impacting the business,
nor does it give you a triaged list of what is most critical at any given moment. You can
have many colorful counters and alarms, but they’re useless if they don’t identify an
order of importance to your issues, provide proactive insights and guidance, and tell
you how to troubleshoot the issues.

Muddying the waters with a discussion about new terms such as
observability versus monitoring runs the risk of validating this
naive approach.

For example, observability is defined by some as simply collecting metrics, event

logs, and traces (whatever we have) and adding analytics on top of that. This overly
simplistic view will not give you an observability system that improves your solution.

Observability in distributed edge: a complete guide avassa.io | 2

https://avassa.io/

Signs of the naive approach:

Users report most of the issues, not Too much focus on managing
the monitoring solution. the data platform.

Monitoring dashboard does not give Hard to analyze underlying
proactive guidance on where there reasons for issues.

are issues.

Naive approach

Central I/Aaa$sS Central Observability Solution

Applications ®: 5 Dashboard with
PP Raw s KPI Points
telemetry
— Analytics
Data layer

The scientific approach

Scientists do not just randomly look at their measurement instruments and see answers
pop out at them. They define research goals and measure what is needed to answer
their specific questions. The same approach should be valid for observability.

We need a way to ask questions about the health of our systems,
and observability should provide answers and detailed support to
help troubleshoot the underlying issue.

It is also important to base the observability system on some facts:

* Many issues are not faults/blackouts rather performance
issues/brownouts.

e Many issues are related to non-optimal or erroneous
configuration issues, not failures.

Observability in distributed edge: a complete guide avassa.io | 3

https://avassa.io/

Therefore a sound observability system must:
e Tell if the system works and why it is not working.

* Focus on application heal/th and not just failure and blackout
scenarios.

 Be defined by the valuable insights it gives rather than a
collection of logs and metrics.

Google has put together an excellent summary of relevant observability principles in a
section on monitoring distributed systems. It summarizes principles to reach the goals
outlined above.

A proper observability solution should support all phases of a
resolution process, which is illustrated below:

Time to restore

>
Time to Time to Time Time to
identify/innocence analyze to fix validate
Blame-game What is the underlying Fix the Validate that it works
Identify that there is an issue problem? problem

Time to identify/innocence

This is the most costly phase in many situations. Users have to convince the
operations team that there is an issue. In many cases monitoring solutions do
not detect that there is an issue.

Time to analyze
Once we identify that there is an issue, we need to be able to understand what
the problem is.

Time to fix
The problem needs to be fixed. This can mean changing the configuration or
restarting a container.

Time to validate
Sometimes overlooked, after a fix, we need to validate that the health is
restored until pinging the customers or users.

Observability in distributed edge: a complete guide avassa.io | 4

https://sre.google/sre-book/monitoring-distributed-systems/#xref_monitoring_golden-signals](https://sre.google/sre-book/monitoring-distributed-systems/#xref_monitoring_golden-signals
https://avassa.io/

How can we build an observability system that supports the
complete resolution process as outlined in the previous page?

The four observability pillars

Before moving onto the specifics of edge observability let’s dig into pillars needed for a
good observability solution:

Bottom-up pillars Top-down pillars

The most often talked about These, including synthetic
include metrics, event logs, and measurements and probes, are
traces. In the naive approach, all sometimes overlooked.

focus lies here.

Bridging pillars Action pillars

These connect various These include tools to perform
measurements into something troubleshooting and restore
meaningful. health.

Bottom-up pillars

The bottom-up pillars are primarily concerned with white-box data
produced by the individual components: metrics, event logs,
and traces.

These data sources are most valuable in the time to analyze phase when you want to
understand what went wrong. They are less useful in the time to identify phase, when
you’re trying to proactively detect if something is wrong. It is often too challenging

to pinpoint which fraction of the events and metrics point to a system’s health
degradation. Also, many degradations issues are due to misconfigurations which often
do not result in events. In addition, it is important to consider the challenges of data
quality and historical efforts of filtering and correlation. To some degree, modern
technologies like anomaly detection can help the situation.

Developers with an observability mindset can assist with
improving data quality in the bottom-up pillar.

No code is done until you’ve built instrumentation to support it. Without building in this
kind of visibility, operations teams cannot determine why a system has failed. You need

to consider the users of the data, what is needed to troubleshoot, and which events are
needed for the complete resolution process.

Observability in distributed edge: a complete guide avassa.io | 5

https://avassa.io/

Top-down pillars

Bottom-up pillars are crucial to understanding how to troubleshoot individual
components. However, they are less valuable when trying to understand the system’s
overall health.

Therefore we should balance our solutions by adding more top-
down measurements. And the most important measurements are
results from synthetic probes and health states.

Synthetic probes act as clients or end-users.

They generate requests to the application and validate the response compared to what
is expected. This can be HTTPS or TCP requests, for example. The tactical thing here

is that this proactively detects issues impacting clients. It also detects complex issues
that correspond to a misconfiguration, which normally is hard to detect from events
and logs. It is tough to improve the time to identify without using synthetic probes.
Synthetic probes can act towards components or the system as a whole. In the latter
case, the probe directs traffic towards the endpoint that clients consume.

Another important top-down strategy is to implement a consistent
health state across components.

Each component should have a few overall health states. This might be locally inferred
from the bottom-up pillars. But the important thing is that developers should provide
the observable aggregated health state as part of the component/application. This
should not be left to the operations team to infer from a large amount of metrics, event
logs, and traces. Leaving that to the external observer can require them to invent the
wheel again. The developer of the component has the context and domain knowledge
for providing that information.

Bridging pillars

With the above bottom-up and top-down pillars, we have data sources for building
a good observability solution. But a fundamental piece is missing; we need bridging
pillars to make the information even more useful.

Observability in distributed edge: a complete guide avassa.io | 6

https://avassa.io/

These include:

Meta-data and context

Observability data must be enriched with contextual information such as
locations and meaningful names. This is a pre-condition both for human
consumption and automation.

Dependency maps, topology

Individual components are most often part of a dependency tree; containers
belong together in an application, hosts are connected via an application
network.

State aggregation
Using the items above, states can be aggregated to show an overall health
state for a site, an application, or a type of service.

Action pillars

To be able to troubleshoot and fix the problem quickly, the
observability solution can not only be a read-only system.

We need to optimize the entire time to restore process, which involves troubleshooting
tools and fixing the problem. Therefore, the observability solution needs to embed
proper tools to dig into components, restart components, run self-tests, and reconfigure
applications easily. Without this, there is a risk that there will be information loss
between operations roles and systems, resulting in a longer time to restore.

Observability in distributed edge: a complete guide avassa.io | 7

https://avassa.io/

With this toolbox at hand, we can address the complete time to
restore process as outlined below.

Time to restore

Time to Time to Time Time to
identify/innocence analyze to fix validate

Bottom-up pillars
Top-down pillars Top-down pillars
Action pillars

Bridging pillars

Observability in distributed edge: a complete guide avassa.io | 8

https://avassa.io/

What is different with
edge observability?

Before digging into how we can specialize the observability solution for the distributed
edge, let us summarize how that differs from a centralized IT solution.

Placement

Connectivity

Centralized or
distributed data
management

Infrastructure
homogeneity

Centralized or
distributed tools

Centralized IT

The applications are centralized
in a few data-centers

Central data-centers can
be assumed to always have
network connection

Bottom-up pillars can
constantly be fed into a
centralized data analytics
solution

Control over homogenous
infrastructure makes it easier
to control application and
infrastructure dependencies

All tools/pillars can be
centralized

Observability in distributed edge: a complete guide

Distributed Edge

The applications are running on
a large set of distributed sites

Edge sites can be disconnected
from the network

Edge sites might be
disconnected and the amount
of data from each site might
be too much to send to a
centralized solution

Loosely coupled to
heterogenous infrastructure
makes the blame game more
complex between application
and infrastructure teams

Pillars/tools need to work
towards, and at, the edges

avassa.io | 9

https://avassa.io/

Context

Deployment
handover to
operations

Physical data centers do not
have contextual meaning in the
observability process

Application deployment

time span is short. Since few
application instances are
installed in central data centers

Edge sites and physical location
have contextual meaning

Application deployment time
span can be long due to the
number of sites, slow networks,
network outages, etc.

with high-quality networks the
deployment phase for each
deployment is short

Summarizing the table above, we see that an edge observability
solution can not just send bottom-up data to a centralized data
analytics platform.

There needs to be site-local health and metrics that are filtered and aggregated

before sending it to the central solution. It also needs to provide perspectives on the
infrastructure and the applications due to the heterogeneous environment.

The edge observability solution also needs to manage the
combination of centralized observability with distributed sites and
applications.

The tools and views need to be centralized in order to support an efficient operations

process, you need centralized insights. On the other hand, when troubleshooting and
fixing, you need simple ways of directly reaching the edges.

Observability in distributed edge: a complete guide avassa.io | 10

https://avassa.io/

Six solution principles for
edge observability

Below follows six design principles for edge observability. They are illustrated with
some example screenshots from the Avassa system and an imaginary popcorn manager
application at each edge theatre.

Principle 1: Application centricity

It is essential to focus on what matters.

Edge exists to run localized applications. It is the health of the
application that matters.

It is easy to fall into a trap where the observability focus lies on the edge orchestration
platform itself or with the infrastructure. This will lead to a situation where users detect
application issues before the observability system.

The solution needs to be able to see the status of the application
across all edge sites.

The top-down pillar is central to address this principle.

Principle 2: Edge site awareness

Applications run on sites. Sites are fundamental for the edge
use case.

If you own the application, you are most interested in knowing the application’s health
at each edge site.

Observability in distributed edge: a complete guide avassa.io | 1

https://avassa.io/

The screenshot below illustrates application centricity and edge site awareness. You can
select an application and understand its health on each site. Note that you can also see

the overall health state, “Oper. state”, the status of synthetic probes, have direct access

to the containers, and see all associated logs.

« Hide list Seefulltable » popcorn-controller Version: 1.0 View services v Deployed by: popcorn-deployment ~ Done Application actions v
A sites Q. Search applications =2 Filter
SITES @
2% Applications
Displaying all 3 applications Q search sites o
€43 Deployments
® popcorn-contraller A Gsites ©
S sSite 1 Operstate | Connection J Version | Lastdeplo... { Notraffic:... CPU 1 RAM 4|1
® theater-room-manager 6 sites
(&) Tenants Stockholm @ Error @ Connected 1.0 Apr2520211... Jan 06 2022 04:1 95% wm 25% 1
= @ soda-streamer-machines. A Not deployed
A Aerts Goteborg @ ok @ Connected 1.0 Jul13202108... Feb2220221... wmm 40% == 40% 1
M Log events Malmé @ ok 0.9 0ct2020212... Jan2420220.. G- 67% = 67%
Uppsala @ Ok @ Connected 1.0 Jul11202118:... May1520210... == 67% = 67%
Sollentuna @ Ok @ Connected 1.0 Sep 0220210... Oct2920211... == 40% o= 40%
ADMINISTRATION
S Visterds @ Ok @ Connected 1.0 Dec 29 2021C... 2hago .. — 67% — 67%
- Users
@ Policies Stockholm
% App Roles . . .
5t T Overview Services 2 Containers 6 Network Hosts 5 Logs
=) popcorn-controller-1 o] [= theater-operations-1 o | [@ curtain-controller-1 .

application-network ips: 172.16.0.1/16 Restart Service View logs Restart Service View logs

gateway-network ips: 10.21.265.2/24
ingress ips: i}

host name: stockholm-001
CONTAINERS

adl & projector-operations .
Start time: 2022-01-28T12:31:29.478Z
Current restarts: 5

Total restarts: 12

Startup probe: @ Success
Readiness probe: @ Success

Liveness probe: @ Success

L | @ digital-assets-manager e

This illustrates the use of all four pillars at the edge site

We can reach logs for the
applications and containers at a
specific edge site.

We have bridging pillars,
including the application

and container structure,
dependencies between them,
and site information.

Observability in distributed edge: a complete guide

We have overall health state
and synthetic probes for the
applications on the edge site.

Actions are available to interact
with the containers directly on
each site.

avassa.io | 12

https://avassa.io/

Principle 3: Deploy and operations perspectives

When deploying or updating an application to thousands of sites,
the solution needs to provide good insights into the deployment
process itself.

This is because the deployment process for edge is more complex than it is for central
clouds. The time span is much longer; waiting states or failures states might span days.
An edge deployment might need to wait for network connectivity to an edge site,

for example.

It is possible to have 80% of the sites with running applications
that are moving into the operations phase, while 20% of the
applications are not yet healthy after deployment.

This must be visible so that daily operations is aware that the 20% aren’t ready

and should be sent them back to the delivery team. Applications that are not yet
successfully deployed should not be the target for ongoing monitoring. They are still in
the deploy phase. It is also essential to support drill-down functions so the outstanding
steps in the deployment are visible.

The screenshot below illustrates insights into a canary deployment across edge sites.
Both deployment and operations teams need to understand that specific sites are up
and running where others are waiting for the canary sites.

o Check application O Upload Images . Deploy to 7 sites

DEPLOYING...
Canary Sites matching expression Type = Canary

@ Malmo redeploy Done
@ Helsingborg redeploy Done

Remaining Sites matching expression Country = Sweden

 Stockholm Séder Initiating deploymen
7 éothenburg Bergakungen Initiating deploymen
. brebro Initiating deploymen
J .\/ésterés Initiating deploymen
3 .Luleé Initiating deploymen

DEPLOYED SITES

Filter finished sites Q

This addresses a well-known handover problem between delivery teams and operations
teams. Did the application and services even work at delivery or is the operations team
chasing delivery problems? This issue is more challenging in the edge use case and
must be well addressed.

Observability in distributed edge: a complete guide avassa.io | 13

https://avassa.io/

Principle 4: Infrastructure and application views

For edge, the application and infrastructure layer are more
disconnected than in the central cloud case.

This creates even bigger communication challenges between the infrastructure and the
application teams than in traditional central observability. As a result of this, the time to
identify is extended in a negative way: where is the issue?

The observability solution must therefore give full insight into the
underlying edge platforms as well as the application layer and the
dependencies between them.

In many cases, the infrastructure is owned by one organization and the applications by
another. This kind of multi-tenancy must be well supported and at the same time make
sure information can not be shared between tenants for security reasons. In addition,
there must be enough information provided to speed up any issues. For example,
application teams need insights into the to compute resources, and the infrastructure
owner typically needs insights into which applications are running on which edge sites.

The screenshot below illustrates observability insights into the edge sites and
compute hosts.

« Hide list See full table »
popcorn-controller Version: 1.0 View services v Deployed by: popcorn-deployment ~ Done Application actions v
& sites Q applicat =2 Fiter
2% Applicat SITES @
Displaying all 3 applications
Q search sites =2 Filte:
® popcorn-controller Assi
site 4 Operstate | Connection 4 Version | Lastdeplo.. { Notraffic... 4 CPU 4 RAM 4
® theater-room-manager Ass
. Stockholm @ Error @ Connected 1.0 Jan 06 2022 (... Aug 12 202110:3: 95% @ 25%
® soda-streamer-machines A Notdeployed }
Géteborg @ok @ Connected 1.0 Feb2220221... Nov252021C.. wmm 40% - 0%
Malmo @ Ok 0.9 Jan 24 2022 0... Mar 26 20210... E—S 67% ——— 67%
Uppsala @ ok @ Connected 1.0 May 15 20210... Dec 07 20210... === 67% == 67%
ADMINISTRATION Sollentuna @ 0k @ Connected 1.0 Oct 29 20211.... Oct2720211%... == 40% ==m 40%
Vasterds @ok @ Connected 1.0 Apr2520211.... 2hago — 7% e 7%
Stockholm
Overview ~ Services 2 Containers 6 Network Hosts 5 Logs
S STOCKHOLM-001 S STOCKHOLM-002 S STOCKHOLM-003
Service: popcorn-controller Service: popcorn-controller Service: popcorn-controller
3 popcorn-controller-1 . 3] popcorn-controller-1 3 popcorn-controller-1 .
[popcorn-controller-1 o] [popcorn-controller-1 o] (& popcorn-controller-1 o]

3] popcorn-controller-1 .

Service: theater-operations Service: theater-operations
Service: curtain-controller [popcorn-controller-1 o] (@ popcorn-controller-1 o]
) popcorn-controller-1) IEI popcorn-controller-1 0] (3 popcorn-controller-1 .
c h 0 h
Service: curtain-controller Service: popcorn-controller
[popcorn-controller-1 o] [popcorn-controller-1 ol

It also clarifies the mapping between the applications and where they are running. This
means that the infrastructure team will know which application containers are running
on which hosts. And similarly, the application team will see which containers are
running on which hosts. This is critical in speeding up the resolution process

Observability in distributed edge: a complete guide avassa.io | 14

https://avassa.io/

Principle 5: All four pillars combined

As briefly summarized above we need all four pillars applied locally to each edge site.
This is elaborated here:

Bottom-up pillars

Not all logs and metrics can be streamed to a central application. The edge site
should filter, analyze, and store the data locally. Local troubleshooting must be
supported if the connectivity to the central site is down. Also, in large-scale
scenarios, it will be too much to send everything. A subset and aggregated data
set should be forwarded to the central solution.

Furthermore, the central solution should support distributed search mechanisms
to dig down into the sites when needed.

The screen shot below illustrates a distributed log search across sites:

‘%. Edge Log Query

A
87 popcorn-controller All sites (4)
Search logs View logs since
Q error 22-03-25 09:38:21

Reset Query Stop Query

Filter by: Q search retrieved logs

Top-down pillars

Synthetic probes should be run at each application site to determine the
externally visible health. Use of mechanisms like startup, readiness, and liveness
probes are strongly recommended. Furthermore, the overall health state should
be aggregated per edge site and per application per edge site.

Observability in distributed edge: a complete guide avassa.io | 15

https://avassa.io/

Bridging pillars

Metadata like application information, application and container structure, and
site data such as location is fundamental for the observability processes. Human
operators need this to understand where the issues happen, and automation
tools need this to take action.

Action pillars

In the distributed edge case, operations teams need centralized tools to quickly
dig down into a specific container in a particular site. This should not assume
manual steps and look up information manually. As an example, if a problem
seems related to a specific container an operator should have direct access

to tools to manage and inspect the container. It should not be necessary to
manually find out addresses, hosts names and login information, and run
container commands manually.

The example screenshot below illustrates how an operations user has drilled
down to an application on a certain site and can perform container operations
such as restart and exec:

Q s =2 Filter
popcorn-controller
theater-room-manager Site 1 Oper.state | Connection | Version | Lastdeplo.. 4 Notraffic:... 4 CPU 4 RAM 4 | D
soda-streamer-machines Stockholm @ Connected 1.0 Jul1320210:... Feb22202219:2 95% wm 25% @
Géteborg @ ok @ Connected 1.0 0ct2020212... Jan2420220.. == 40% w=m 0% =
Malmo @ ok 0.9 Jul11202118:... May1520210... emmmm 67% emmmm — 67% @&
Uppsala @ ok © Connected 1.0 Sep0220210... Oct2920211... w=m 67% wmm 67%
Sollentuna @ ok @ Connected 1.0 Dec 292021C... Apr 252021 1.... &= 40% - 40% =
Vasteras @ Ok @ Connected 1.0 Aug 122021 1(... 2h ago — 67% — 67% =
Stockholm
Overview Services 2 Containers 6 Network Logs
Exec || Execlnteractive | | Restart Service]
Name 4 Oper-status | Starttime 4 Host 4 cpPu 4 RAM 02
theater-operations @ Running 2021-02-17T12:08:39.20 ... stockholm-host-001 mmmm 20% wm— 20%
theater-operations-service @ Running 2021-02-17T12:08:39.202:... goteborg-host-001 N~ 67% S 67%
‘ (=] theater-operations .
Service resource usage Last 30 days v
CPU USAGE MEMORY DISC USAGE

Observability in distributed edge: a complete guide avassa.io | 16

https://avassa.io/

Principle 6: Managing scale

Each scenario can include thousands of sites with numerous
applications on each site.

Views and tools must be designed for this. Operators need views that can present this
in an overview but include quick drill-down to details.

Managing metrics, logs, and more in the edge use case will also put scaling challenges
on the solution, it is probably not feasible to forward all low level data from each edge
to the central application. As stated previously, proper division with what is stored
locally at each site and forwarded to the central solution must be balanced.

The screenshots below illustrate the use of heat maps as one technigue to give an
overview of a large number of sites and applications:

Health summary Sites

Current state of your Avassa platform:

Stockholm Giteborg Malmd Uppsala Sollentuna
Sites Host-1 @ Host-1 ® Host-1 @ Host-1 Host-1 @
Host-2 @ Host-2 @ Host-2 @ Host-2 Host-2 @
Connected == os e o os
Not connected ‘\3),
Eskilstuna Halmstad Vaxjo Karlstad Stockholm
Host-1 @ Host-1 @ Host-1 @ Host-1 @ Host-1 @
Application: popcorn-controller Host-2 @ Host-2 @ Host-2 @ Host-2 @
Host-3 @ Host-3 @
Deployed @ Malmé Uppsala Sollentuna Visterds Orebro
Unknown (1) Host-1 @ Host-1 @ (Unknown Host-1 @ Host-1 @
) Host-2 @ Host-2 @ giaie) Host-2 @
PIOKEE Uj Host-3 @ Host-3 @
Helsingborg Janképing Narrképing Lund
Application: curtain-controller Host1 @ Host-1 ® Host-1 @ Host-1 @
Host-2 @ Host-2 @ Host-2 @ Host-2 @
Deployed o Host-3 @
Health summary Application: popcorn-controller
Current state of your Avassa platform:
000000000000000000
Sies 00000000000000000
Connectec CD) 00000000000000a000
Not connected ® 00000000000000a000
5039570000835539500
Application: popcorn-controller
000000000000000000
Deployed @) 000000000000000000
Unknown ® 000000000000000000
Broken ® 000000000000000000
00000000000000

Application: curtain-controller

Deployed o

Observability in distributed edge: a complete guide avassa.io | 17

https://avassa.io/

The illustration below illustrates the principles for the edge
use case:

Edge observability solution principle

Local edge Central Edge

observability Observability Solution

Four pillars
Telemetry Answer these questions
[Applications] Health State
Probe Status Proactive Edge Observability

Edge Topology ¢ How can we proactively
m detect edge issues?
’ ¢ How can we analyze issues?
¢ ¢ How can we quickly
fix issues?
How can we validate that

the service is restored?

Many sites

>
0
=
®)
5
n
L]

Local edge

observability

Four pillars

[Applications]

All four principles are applied locally at each edge. The interface between the edges

are not just telemetry data, rather an interface supporting all pillars. This will result in a
centralized edge observability that answers the fundamental questions for the complete
resolution process.

Observability in distributed edge: a complete guide avassa.io | 18

https://avassa.io/

Conclusion

Do not forget to build the edge observability solution
around which questions need to get answered rather than
focusing too much on the data platform technology.

Make sure to apply the four observability pillars in order to
support the complete resolution process.

And let application focus and edge awareness guide
the design.

https://avassa.io/

	Edgy observability?
	Where are we on monitoring and observability today?
	The scientific approach
	The four observability pillars
	Bottom-up pillars
	Top-down pillars
	Bridging pillars
	Action pillars

	What is different with edge observability?
	Six solution principles for edge observability
	Principle 3: Deploy and operations perspectives
	Principle 4: Infrastructure and application views
	Principle 5: All four pillars combined
	Principle 6: Managing scale

	Conclusion

